Principles, Classification, and Applications of Physical Vapor Deposition (PVD) Technology
Physical Vapor Deposition (PVD) is an advanced surface engineering technology that, under vacuum conditions, uses physical methods to convert a target material into gaseous atoms, molecules, or ions, which then deposit onto the substrate surface to form a thin film. Since its development in the early 20th century, PVD technology has become a crucial technique in modern additive manufacturing and functional coating applications, owing to its advantages such as environmental friendliness, controllable costs, minimal consumable usage, dense and uniform film properties, and strong adhesion between the film and substrate.
PVD enables the on-demand preparation of functional films with properties including wear resistance, corrosion resistance, conductivity, insulation, piezoelectricity, and magnetism, and is widely used across various industries, including mechanical, electronic, construction, and medical sectors.
I. Overview
Physical Vapor Deposition Physical Vapor Deposition, PVD ) is an advanced surface engineering technology that, under vacuum conditions, uses physical methods to convert a target material into gaseous atoms, molecules, or ions and deposits them onto the substrate surface to form a thin film. Since its development in the early 20th century, PVD technology has been favored for its... Environmentally friendly, cost-controllable, requires minimal consumables, features a dense and uniform film layer, and exhibits strong adhesion between the film and substrate. With its advantages, it has become an important technology in the fields of modern additive manufacturing and functional coatings.
PVD can be used to prepare materials with specific requirements. Wear-resistant, corrosion-resistant, conductive, insulating, piezoelectric, magnetic Functional films with such properties are widely used in various industries, including mechanical, electronic, construction, and medical sectors.
II. Basic Process Principle
The film-forming process of PVD typically involves the following three core steps:
The entire process is carried out under high-vacuum or medium-vacuum conditions, effectively avoiding interference from gaseous impurities and ensuring the purity and performance of the film layer.
III. Main Types and Principles of PVD Technologies
1. Vacuum Evaporation Coating Vacuum Evaporation)
The principle is the simplest: the target material is vaporized by heating and then condenses onto the substrate to form a film. Depending on the heat source, it can be categorized as follows:
2. Vacuum sputtering coating (Sputtering Deposition)
In a vacuum environment, high-energy ions (typically Ar⁺) are used to bombard the target surface, causing target atoms to be “sputtered” off due to momentum transfer and subsequently deposited onto the substrate.
3. Arc Ion Plating (AIP)
Based on Cathodic arc discharge Principle: Under low vacuum conditions (approximately 10⁻² Pa), an arc is initiated on the surface of a conductive target material using an arc-starting needle. The instantaneous high temperature (>10⁴ K) causes local vaporization and intense ionization of the target material, forming a metal plasma. Subsequently, under the influence of a bias voltage, the plasma deposits onto the substrate.
Features :
4. Electron Beam Physical Vapor Deposition (EB-PVD)
By combining the advantages of electron-beam evaporation and directional deposition, a high-energy electron beam is used to precisely heat the target material, allowing the vapor to grow epitaxially on a low-temperature substrate, typically forming... Columnar crystal structure 。
Advantage :
IV. Main Application Areas
1. Tool and Mold Surface Enhancement
2. Architectural decorative materials
3. Preparation of Special Functional Films
4. Thin Films for Electronic and Medical Devices
5. Corrosion-resistant protective coating
V. Summary
Physical vapor deposition technology, thanks to its High precision, multi-functionality, environmentally friendly Its characteristics have become one of the indispensable core processes in modern advanced manufacturing. As the demand for high-performance materials continues to grow, PVD technology is moving toward... High ionization rate, nanostructure modulation, and integrated composite processing Continuing to develop in various directions, it will play an even greater role in cutting-edge fields such as new energy, microelectronics, and biomedicine in the future.
News Center
Principles, Classification, and Applications of Physical Vapor Deposition (PVD) Technology
Physical Vapor Deposition (PVD) is an advanced surface engineering technology that, under vacuum conditions, uses physical methods to convert a target material into gaseous atoms, molecules, or ions, which then deposit onto the substrate surface to form a thin film. Since its development in the early 20th century, PVD technology has become a crucial technique in modern additive manufacturing and functional coating applications, owing to its advantages such as environmental friendliness, controllable costs, minimal consumable usage, dense and uniform film properties, and strong adhesion between the film and substrate.
PVD enables the on-demand preparation of functional films with properties including wear resistance, corrosion resistance, conductivity, insulation, piezoelectricity, and magnetism, and is widely used across various industries, including mechanical, electronic, construction, and medical sectors.
Recently, TGV (Through Glass Via) technology has made significant strides in the fields of materials processing and micro- and nano-manufacturing, drawing considerable attention from the semiconductor, advanced packaging, and emerging electronic device industries. With its outstanding electrical performance, high-frequency characteristics, and three-dimensional integration capabilities, TGV is emerging as one of the key technologies for next-generation high-density interconnects.
Application of TGV Glass Through-Hole Technology in Magnetron Sputtering
As an advanced micro- and nano-fabrication technique, TGV glass via-hole technology has demonstrated tremendous application potential in the field of magnetron sputtering. By precisely fabricating vias on glass substrates, this technology not only enables vertical interconnections for three-dimensional circuits but also significantly enhances the integration and performance of electronic devices.
Diamond is used as a semiconductor material—and some scholars even hail it as the “ultimate semiconductor material” and the “ultimate room-temperature quantum material”—owing to its unique physical and chemical properties. Diamond is an ultra-wide-bandgap semiconductor that boasts exceptional electrical, optical, mechanical, thermal, and chemical characteristics. These properties give diamond broad application prospects in numerous fields.
Pengcheng Semiconductor: The Strategy, Tactics, and Survival Guide of a High-Tech Enterprise
The 15th China International Nanotechnology Industry Expo (referred to as "Nanobio"), held under much anticipation, successfully came to a close. This year's event featured one keynote speech, 15 parallel forums, and hosted 605 cutting-edge presentations. Additionally, it included an innovation and entrepreneurship competition, along with three supply-and-demand matchmaking sessions. The expo brought together over 150 nationally recognized talents and more than 500 top experts from leading universities, research institutions, and corporate organizations both domestically and internationally. With an exhibition area spanning 25,000 square meters, the event attracted over 350 of the world's premier companies and institutions, showcasing more than 2,400 of the latest nanotechnology products and innovative applications globally. Over the three-day period, the expo drew nearly 27,500 attendees in total, making it the largest-ever edition in terms of scale and cementing its growing influence on the global stage.